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Abstract
Solving the Gross–Pitaevskii-type equation it is shown that the magneto-oscillations observed
in the superconducting state of a few underdoped cuprates originate in the quantum interference
of the vortex lattice with nanoscale crystal lattice modulations of the order parameter as
revealed by scanning tunneling microscopy. The commensuration of the vortex lattice and
crystal lattice have 1/B1/2 periodicity, rather than the 1/B periodicity of conventional normal
state magneto-oscillations. Experimental conditions allowing for a resolution of quantum
magneto-oscillations of two different types are outlined.

(Some figures in this article are in colour only in the electronic version)

Until recently no convincing signatures of quantum magneto-
oscillations have been found in the normal state of cuprate
superconductors despite significant experimental efforts. The
recent observations of magneto-oscillations in kinetic [1, 2]
and magnetic [3, 4] response functions of underdoped
YBa2Cu3O6.5 and YBa2Cu4O8 are perhaps even more
striking since many probes of underdoped cuprates including
ARPES [5] clearly point to a non-Fermi-liquid normal state.
Their description in the framework of the standard theory for
a metal [6] has led to a very small Fermi-surface area of a
few percent of the first Brillouin zone [1–4], and to a low
Fermi energy of only about the room temperature [3]. Clearly
such oscillations are incompatible with the first-principle
(LDA) band structures of cuprates, but might be compatible
with a non-adiabatic polaronic normal state of charge-transfer
Mott insulators [7]. Nevertheless their observation in the
superconducting (vortex) state well below the Hc2(T )-line [1]
raises a doubt concerning their normal state origin.

Here I propose an alternative explanation of the magneto-
oscillations [1–4] as emerging from the quantum interference
of the vortex lattice and the checkerboard or lattice
modulations of the order parameter observed by STM with
atomic resolution [8]. The checkerboard effectively pins the
vortex lattice, when the period of the latter λ = (π h̄/eB)1/2

is commensurate with the period of the checkerboard lattice,
a. The condition λ = Na, where N is a large integer,
yields 1/B1/2 periodicity of the response functions, rather

than 1/B periodicity of conventional normal state magneto-
oscillations. To illustrate the point one can apply the Gross–
Pitaevskii (GP)-type equation for the superconducting order
parameter ψ(r), generalized by us [9] for a charged Bose
liquid (CBL), since many observations including a small
coherence length point to a possibility that underdoped cuprate
superconductors may not be conventional Bardeen–Cooper–
Schrieffer (BCS) superconductors, but rather derive from the
Bose–Einstein condensation (BEC) of real-space pairs, such as
mobile bipolarons [10, 11],
[

E(−ih̄∇ + 2eA)− μ+
∫

dr′V (r − r′)|ψ(r′)|2
]
ψ(r) = 0.

(1)
Here E(K) is the center-of-mass pair dispersion and the
Peierls substitution, K ⇒ −ih̄∇ + 2eA is applied with the
vector potential A(r). The integro-differential equation (1)
is quite different from the Ginzburg–Landau [12] and Gross–
Pitaevskii [13] equations, describing the order parameter in the
BCS and neutral superfluids, respectively. In the continuum
(effective mass) approximation, E(K) = h̄2 K 2/2m∗∗, with
the long-range Coulomb repulsion between double charged
bosons, V (r) = Vc(r) = 4e2/ε0r , this equation describes
a single vortex with a charged core, figure 1, and the
coherence length roughly the same as the screening radius,
ξ = (h̄/21/2m∗∗ωp)

1/2. Here ωp = (16πnse2/ε0m∗∗)1/2 is
the CBL plasma frequency, ε0 the static dielectric constant of
the host lattice, m∗∗ the boson mass, and ns is the average
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Figure 1. The order parameter profile f (ρ) = ψ(r)/n1/2
s of a single

vortex in CBL [9] (symbols). Inset: CBL vortex (a) [9, 15] compared
with the Abrikosov vortex (b) [14] (here ρ = [x2 + y2]1/2).

condensate density. The chemical potential is zero, μ =
0, if one takes into account the Coulomb interaction with a
neutralizing homogeneous charge background, or defines the
zero-momentum Fourier-component of Vc(r) as zero. Each
vortex carries one flux quantum, φ0 = π h̄/e, but it has
an unusual core, figure 1(a), [9], due to a local charge
redistribution caused by the magnetic field, different from
the conventional vortex [14], figure 1(b). Remarkably, the
coherence length turns out very small, ξ ≈ 0.5 nm with the
material parameters typical for underdoped cuprates, m∗∗ =
10me, ns = 1021 cm−3 and ε0 = 100. The coherence length
ξ is so small at low temperatures, that the distance between
two vortices remains large compared with the vortex size,
λ � ξ , [15] in any laboratory field reached so far [1–4].
It allows us to write down the vortex-lattice order parameter,
ψ(r) = ψvl(r), as

ψvl(r) ≈ n1/2
s

[
1 −

∑
j

φ(r − r j )

]
, (2)

where φ(r) = 1 − f (ρ), and r j = λ{nx , ny} with nx,y =
0,±1,±2, . . .. (if, for simplicity, we take the square vortex
lattice). The function φ(ρ) is linear well inside the core,
φ(ρ) ≈ 1–1.52ρ/ξ(ρ � ξ), and it has a small negative
tail, φ(ρ) ≈ −4ξ 4/ρ4 outside the core when ρ � ξ ,
figure 1 [9]. In the continuum approximation with the
Coulomb interaction alone the magnetization of CBL follows
the standard logarithmic law, M(B) ∝ ln 1/B without any
oscillations since the magnetic field profile is the same as in
the conventional vortex lattice [14]. However, more often than
not the center-of-mass Bloch band of preformed pairs, E(K),
has its minima at some finite wave vectors K = G of their
center-of-mass Brillouin zone [10, 16]. Near the minima the
GP equation (1) is written as[
(−ih̄∇ − h̄G + 2eA)2

2m∗∗ − μ

]
ψ(r)

+
∫

dr′V (r − r′)|ψ(r′)|2ψ(r) = 0, (3)

with the solution ψ(r) = ψG(r) ≡ eiG·rψvl(r), if the
interaction is the long-range Coulomb one, V (r) = Vc(r).

Figure 2. The checkerboard d-wave order parameter of CBL [17] on
the square lattice in zero magnetic field (coordinates x, y are
measured in units of a).

In particular, a nearest-neighbor (nn) approximation for the
hopping of intersite bipolarons between oxygen p-orbitals on
the CuO2 2D lattice yields four generate states ψG with Gi =
{±2π/a0,±2π/a0}, where a0 is the lattice period [16]. Their
positions in the Brillouin zone move towards 
 point beyond
the nn approximation. The true ground state is a superposition
of four degenerate states, respecting time-reversal and parity
symmetries [17],

ψ(r) = An1/2
s

[
cos(πx/a)± cos(πy/a)

]
ψvl(r). (4)

Here we use the reference frame with x and y axes along
the nodal directions and a = 2−3/2a0. Two ‘plus/minus’
coherent states, equation (4), are physically identical since
they are related via a translation transformation, y ⇒ y +
a. Normalizing the order parameter by its average value
〈ψ(r)2〉 = ns and using (ξ/λ)2 � 1 as a small parameter
yield the following ‘minus’ state amplitude, A ≈ 1 −
N

∑∞
n=0 2[φ̃1(21/2π/a)+ φ̃2(21/2π/a)]δn,R/2 + [φ̃1(2π/a)+

φ̃2(2π/a)]δn,R for the square vortex lattice1 with the reciprocal
vectors g = (2π/λ){nx , ny}. Here δn,R is the Kroneker
symbol, R = λ/a is the ratio of the vortex-lattice period to
the checkerboard period (n = 0, 1, 2, . . ..), N = BS/φ0 is the
number of flux quanta in the area S of the sample, and φ̃k(q) =
(2π/S)

∫ ∞
0 dρ ρ J0(ρq)φk(ρ) is the Fourier transform of k’s

power of φ(ρ), where J0(x) is the zero-order Bessel function.
The order parameter ψ(r), equation (4) has the d-wave

symmetry changing sign in real space, when the lattice is
rotated by π/2. This symmetry is due to the pair center-of-
mass energy dispersion with the four minima at K = 0, rather
than due to a specific symmetry of the pairing potential. It
also reveals itself as a checkerboard modulation of the carrier
density with two-dimensional patterns in zero magnetic field,
figure 2, as predicted by us [17] prior to their observations [8].
Solving the Bogoliubov–de Gennes equations with the order
parameter, equation (4), yields the real-space checkerboard
modulations of the single-particle density of states [17], similar
to those observed by STM in cuprate superconductors.

1 Results for the square vortex lattice are also applied to the triangular
lattice. Moreover there is a crossover from triangular to square coordination
of vortices with increasing magnetic field in the mixed phase of cuprate
superconductors [18].
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Now we take into account that the interaction between
composed pairs includes a short-range repulsion along with
the long-range Coulomb one, V (r) = Vc(r) + vδ(r) [16].
At sufficiently low carrier density the short-range repulsion
is a perturbation to the ground state, equation (4), if the
corresponding characteristic length, ξh = h̄/(2m∗∗nsv)

1/2

is large compared with the coherence length ξ , related to
the long-range Coulomb repulsion, ξh � ξ . The short-
range repulsion constant v is roughly the pair bandwidth w
of the order of 100 meV times the unit cell volume, v ≈
wa3

0 [16]. Using this estimate one can readily show that the
perturbation treatment of the short-range interaction is justified
for any relevant density of pairs, if ε0 � 103. On the other
hand, a strong short-range interaction could affect both the
checkerboard and the vortex lattices, if ξh is comparable with
ξ and a. Importantly the short-range repulsion energy of CBL,
U = (v/2)〈ψ(r)4〉, has a part, �U , oscillating with the
magnetic field as

�U

U0
≈ N

∞∑
n=0

[
A1δn,R/2 + A2δn,R + A3δn,2R

]
, (5)

where U0 = vn2
s/2 is the hard-core energy of a homogeneous

CBL, and the amplitudes are proportional to the Fourier
transforms of φ(ρ) as

A1 = 15φ̃1(2
1/2π/a)− 45φ̃2(2

1/2π/a)+ 24φ̃3(2
1/2π/a)

− 6φ̃4(2
1/2π/a)+ 8φ̃1(101/2π/a)− 12φ̃2(101/2π/a)

+ 8φ̃3(101/2π/a)− 2φ̃4(101/2π/a),

A2 = −(23/2)φ̃1(2π/a)+ (57/2)φ̃2(2π/a)− 16φ̃3(2π/a)

+ 4φ̃4(2π/a)− 12φ̃1(2
3/2π/a)+ 9φ̃2(2

3/2π/a)

− 6φ̃3(2
3/2π/a)+ 3φ̃4(2

3/2π/a),

and

A3 = −φ̃1(4π/a)+ (3/2)φ̃2(4π/a)− φ̃3(4π/a)

+ (1/4)φ̃4(4π/a).

Unavoidable disorder in cuprates and temperature
fluctuations induce some randomness in the vortex-lattice
period, λ. Hence one has to average �U over R with the
Gaussian distribution, G(R) = exp[−(R − R̄)2/γ 2]/γπ1/2

around an average R̄ with the width γ � R̄, which could
depend on temperature. Then using the Poisson summation
formula yields

�U

U0
= N

∞∑
k=0

A1e−π2k2γ 2/16 cos(πk R̄)

+ A2e−π2k2γ 2/4 cos(2πk R̄)+ A3e−π2k2γ 2
cos(4πk R̄). (6)

The oscillating correction to the magnetic susceptibility,
�χ(B) = −∂2�̃/∂B2, is strongly enhanced due to high
oscillating frequencies in equation (6). Since the superfluid has
no entropy we can use �U as the quantum correction to the
thermodynamic potential �̃ even at finite temperatures below
Tc(B). Differentiating twice the first harmonic (k = 1) of the
first lesser damped term in equation (6) we obtain

�χ(B) ≈ χ0e−δ2 B0/16B

(
B0

B

)2

cos(B0/B)1/2, (7)

where χ0 = U0S A1e2a2/4π4h̄2 is a temperature-dependent
amplitude, proportional to the condensate density squared,
B0 = π3h̄/ea2 = 8π3h̄/ea2

0 is a characteristic magnetic field,
which is approximately 1.1 × 106 T for a0 ≈ 0.38 nm, and
γ is replaced by γ ≡ δ R̄ with the relative distribution width
δ. Assuming that ξ � a, so that the amplitude A1 is roughly
a2/S, the quantum correction �χ , equation (7), is of the order
of wx2/B2, where x is the density of holes per unit cell. It
is smaller than the conventional normal state (de Haas-van
Alphen) correction, �χdHvA ∼ μ/B2 [6], for a comparable
Fermi-energy scale μ = wx , since x � 1 in the underdoped
cuprates.

Different from normal state dHvA oscillations, which
are periodic versus 1/B , the vortex-lattice oscillations,
equation (7) are periodic versus 1/B1/2. They are
quasiperiodic versus 1/B with a field-dependent frequency
F = B0(B/B0)

1/2/2π , which is strongly reduced relative to
the conventional-metal frequency (≈B0/2π ) since B � B0,
as observed in the experiments [1–3]. The quantum correction
to the susceptibility, equation (7) fits well the oscillations in
YBa2Cu3O6.5 [4], figure 3 (upper panel). Importantly, if the
vortex lattice has two domains with different coordination of
vortices (see footnote 1), then there are two resonating fields,
B0 of the square lattice and B1 = 2B0/3 of the triangular
lattice, causing beats in the oscillations, as observed in [3] at
low temperatures in YBa2Cu4O8 (figure 3, middle panel). A
pinning force on the vortex lattice, Fp, due to the checkerboard
modulations is proportional to ∂U/∂a. Hence the oscillating
part of the Hall and longitudinal resistivity is proportional
to Fp/B ∝ exp(−δ2 B0/16B)(B0/B)1/2 sin(B0/B)1/2, which
fits the oscillatory part of the Hall resistance [1] rather
well, figure 3 (lower panel). The oscillations amplitudes,
proportional to n2

s exp(−δ2 B0/16B) decay with increasing
temperature since the randomness of the vortex lattice, δ,
increases, and the Bose-condensate evaporates.

In summary, I propose that the magneto-oscillations in
underdoped cuprate superconductors [1–3] result from the
quantum interference of the vortex lattice and the lattice
modulations of the order parameter, figure 2, playing a role
of the periodic pinning grid. The magnetic length, λ � 5 nm,
remains larger than the zero-temperature in-plane coherence
length, ξ � 2 nm, measured independently, in any field
reached in [1–3]. Hence the magneto-oscillations are observed
in the vortex (mixed) state well below the upper critical
field, rather than in the normal state, as also confirmed by
the negative sign of the Hall resistance [1]. It is well
known, that in ‘YBCO’ the Hall conductivities of vortexes
and quasiparticles have opposite sign causing the sign change
in the Hall effect in the mixed state [19]. Also there is a
substantial magnetoresistance [2], which is a signature of the
flux flow regime rather than of the normal state. Hence it would
be rather implausible if such oscillations have a normal state
origin due to small electron Fermi-surface pockets [4] with the
characteristic wavelength of electrons larger than the widely
accepted coherence length. In any case our expression (7),
describes the oscillations as well as the standard Lifshitz–
Kosevich formula of dHvA and SdH effects [1–4]. The
difference of these two dependences could be resolved in
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Figure 3. Quantum corrections to the vortex-lattice susceptibility
versus 1/B, equation (7) (solid line, B0 = 1.000 × 106 T, δ = 0.06)
compared with oscillating susceptibility of YBa2Cu3O6.5 (symbols)
and with the conventional normal state oscillations (dashed line) [4]
at T = 0.4 K, upper panel. Middle panel: oscillating susceptibility of
YBa2Cu4O8 (symbols [3]) at T = 0.53 K compared with the theory
(solid line, B0 = 1.190 × 106 T, δ = 0.07), where 20% of the
triangular vortex-lattice susceptibility added to the square lattice one.
Lower panel: quantum corrections to the current, proportional to
Fp/B (B0 = 0.853 × 106 T and δ = 0.1, solid line) compared with
the oscillatory part of the Hall resistance in the mixed state of
YBa2Cu3O6.5 (symbols [1]) at 1.5 K.

ultrahigh magnetic fields as shown in figure 3, upper panel. In
case it turns out that the magneto-oscillations are conventional
dHvA normal state oscillations, then the low Fermi energy

will support the polaronic non-adiabatic superconductivity in
cuprates [7].

While our theory utilizes GP-type equation for hard-core
charged bosons [9], the quantum interference of vortex and
crystal lattice modulations of the order parameter is quite
universal extending well beyond equation (1) independent of
a particular pairing mechanism. It can also take place in the
standard BCS superconductivity at B < Hc2, but hardly be
observed because of much lower value of Hc2 in conventional
superconductors resulting in a very small damping factor,
∝ exp(−δ2 B0/16B) ≪ 1.
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